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Figure 1: (Right) A 1D heterogeneous bar deformed under external forces (shown as red arrows) and fixed from one side (green fixtures at
the left end). The material distribution affects its behavior and optimised values are required of the shape (interpolation) functions. (Left)

Using a genetic algorithm to estimate the shape functions.

1 Introduction

Simulation of the interactions with deformable models is important
in many applications such as medical training and tissue engineer-
ing. To physically model the 3D object, both the inner and outer
segments need to be considered. This implies dealing with differ-
ent materials and hence different deformation behavior. Thus, a
physically-based simulation needs to augment the behavior of em-
bedded materials when the materials are in direct physical contact,
and produce a plausible net result in both visual and haptic cues.

A straightforward solution is to model the object as a mass spring
system (MSS) and change stiffness in different material regions.
Although this is a direct and fast approach, it is not usually conver-
gent or matches the constitutional laws. Other approaches use finite
element methods (FEM) to simulate the interactions. For static sim-
ulation the governing equation is:
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Here p is the shear modulus, v is the Poisson’s ratio, A is the cross
section, L is the 1D bar length, u is the displacement vector, F'® is
the external force vector, and N® and N? are the shape functions.
The shape functions are used in the interpolation of displacements
along the object elements. In classic FEM, linear or quadratic shape
functions are used for the 1D case where —1 < & < 1 Eq. (3).
However, they do not reflect the material distribution of the object
because they are static and designed independently to be generic
[Nesme et al. 2009].
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We propose a shape function estimation techniques using genetic
algorithms. The technique uses empirical data sets as a fitness func-
tion to judge the accuracy of the solution.
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2 Our Approach

In order to use an optimisation technique such as genetic algo-
rithms [Mitchell 1998], we need to have an individual represen-
tation (chromosome) and a fitness function to evaluate the perfor-
mance of the individuals. The algorithm also has tuning parameters
which are the mutation and the crossover functions. For the esti-
mation of the shape function, we represented the individual as a
vector with length equal to the number of different materials. The
fitness function used is a critical part of the system as it needs to
be matching realistic behavior and, quick to calculate as well. The
parametric methods such as the generic functions used in FEM are
not computationally efficient [Nesme et al. 2009]. Thus, we pro-
pose using a data-driven approach with collected data sets using a
robot arm and force sensor.

The fitness function is defined as the average Euclidean distance
between the displacement vector values that an individual scores
against a force vector with and the pre-computed data set of dis-
placements by the robot arm. Thus, mathematically speaking for
an individual represented as [¢1, 2, . .., ¢n] we define its fitness

as:
flt(l’l’bd) — Zl (\/Zl (u;nd - u%arget)2/n) (4)
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Where m is the number of external applied forces, n is the length
of chromosome vector, u;,q is the displacement vector generated
from using ¢ s which are the shape functions derivatives in Egs. (1)
and (2) and Ugarget is the displacement vector generated empiri-
cally by the robot arm.

For the 1D case the optimised model behavior is more realistic than
the generic shape functions and no need to enforce constraints as in
[Nesme et al. 2009].
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